Abstract

This work aimed to enhance the photocatalytic degradation of methyl orange (MO) by crystallinity transformation of titanium dioxide (TiO2 ). In addition, the kinetic degradation of MO was determined. To transform its crystallinity, TiO2 was synthesized using a sol-gel method and calcined at between 200°C to 600°C. Calcination at a temperature of 250°C resulted in TiO2 that showed the best performance, corresponding to MO removal of 87%±7%. MO removal by TiO2 calcined between 250°C to 400°C was higher than for commercial TiO2 powder (Sigma-aldrich) (62%±4%). TiO2 with a small crystallite size and high anatase fraction enhanced the photocatalytic degradation of MO, while the specific surface area and surface roughness seemed to play a minor role. The photocatalytic degradation of MO was NaCl-independent, while the photocatalytic activity increased with decreased pH. Reused TiO2 showed similar photocatalytic degradation of MO compared with pristine TiO2 , at 84±2%. The oxidation kinetics of TiO2 calcined at 250°C were fitted to the Langmuir-Hinshelwood model (R2 =0.9134). The kr and Ks values were 0.027mgL-1 min-1 and 0.621L/mg, respectively. Crystallinity transformation was a major factor in the enhancement of photocatalytic degradation of MO. PRACTITIONER POINTS: Photocatalytic activity of TiO2 depends on calcination temperature, pH, and a number of UVC lamps. TiO2 with a small crystallite size and high anatase fraction enhanced the photocatalytic degradation of MO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.