Abstract
Noisy features may introduce irrelevant or incorrect features that can lead to incorrect classifications and lower accuracy. This can be especially problematic in tasks such as person re-identification (ReID), where subtle differences between individuals need to be accurately captured and distinguished. However, the existing ReID methods directly use noisy and limited multimodality features for similarity measures. It is crucial to use robust features and pre-processing techniques to reduce the effects of noise and ensure accurate classification. As a solution, we employ a Gaussian filter to eliminate the Gaussian noise from RGB-D data in the pre-processing stage. For similarity measure, the color descriptors are computed using the top eight peaks of the 2D histogram constructed from pose regularized partition grid cells, and eleven different skeleton distances are considered. The proposed method is evaluated on the BIWI RGBD-ID dataset, which comprises still (front view images) and walking set (images with varied pose and viewpoint) images. The obtained recognition rates of 99.15% and 94% on still and walking set images demonstrate the effectiveness of the proposed approach for the ReID task in the presence of pose and viewpoint variations. Further, the method is evaluated on and RGBD-ID and achieved improved performance over the existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.