Abstract

Natural foods contain not only nutrients, but also nonnutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions. Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids activate neither sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter-compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter-sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated derepression of sweet neuron or feeding responses to either sugar/bitter compound mixtures or sugar/bitter compound/acid mixtures, suggesting that there are two independent pathways by which bitter compounds are sensed. Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila's natural food sources-fruits and cohabitating yeast-are rich in sugars and acids but are rapidly colonized by microorganisms, such as fungi, protozoan parasites, and bacteria, many of which produce bitter compounds. We propose that the acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.