Abstract
In the present work, the transformation of m-xylene was studied over fresh and pre-coked H-ZSM-5 catalyst in a riser simulator over the temperature range of 350–500 °C. Significant differences were observed in both the activity and product selectivity pattern for the two forms of the catalyst. While, the fresh catalyst generally gave higher m-xylene conversion, the pre-coked catalyst produced higher isomerization/disproportionation (I/D) and para/ ortho xylene (P/O) ratios. For both forms of the catalyst, m-xylene conversion was found to increase with both reaction temperature and reaction time (0–15 s). A maximum conversion of 30.8% was achieved at 500 °C for a reaction time of 15 s using the fresh catalyst. The corresponding value for the pre-coked catalyst was 24.6%. P/O and I/D ratios as high as 2.5 and 10, respectively, were observed with the pre-coked catalyst. It was also observed that the P/O and I/D ratios decreased with increasing temperature for both catalyst and that the difference between these ratios for the two catalysts was more pronounced between 400 and 450 °C than at higher temperatures. Kinetic modelling of the m-xylene transformation over the pre-coked catalyst yielded a lower activation energy for p-xylene formation compared to the fresh catalyst. And an activation energy of 17.5 kcal/mol for the m-xylene dispropotionation was obtained for the pre-coked catalyst compared to 7.82 kcal/mol for the fresh catalyst. These values are indicative of the restriction posed on disproportionation by the pre-coked catalyst as reflected by higher I/D ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemical Engineering and Processing - Process Intensification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.