Abstract

AbstractSince the active sites in catalytic systems are either metal sites or lattice oxygen, simultaneously triggering metal and lattice oxygen redox pair with low energy barriers is expected to provide diversified and efficient sites to accelerate oxygen evolution reaction (OER) kinetics, but this is a great challenge. Herein, Ir species (Ir clusters and Ir single atoms) loaded on Ni‐doped Co3O4 is designed (Ir/Ni‐Co3O4), where metallic Ir clusters downsize to spread into high‐density Ir single atoms to load on reconstruction‐derived Ni‐doped CoOOH. In situ spectroscopy, isotope‐labeled, and chemical probe experiments demonstrate that metal site and lattice oxygen are simultaneously activated to participate in the OER. Further theoretical studies demonstrate that the Co site is the most favorable site to promote the OER through an adsorbate evolution mechanism with a low energy barrier of 1.69 eV. The Ni cooperating with Ir atoms synergistically upshifts energy positions of the O p band centers. Thus, the lattice O that bridges Ni and Ir atoms is activated to participate in the OER via coupling with adsorbed O on the Ir site to fulfill O─O bond formation. Benefiting from the conjoint participation of the metal and lattice oxygen redox pair, Ir/Ni‐Co3O4 affords extremely low OER overpotentials of 177 and 263 mV at corresponding 10 and 500 mA cm−2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call