Abstract
Compositionally complex materials (CCMs) have recently attracted great interest in electrocatalytic applications. To date, very few materials were systematically developed and tested due to the highly difficult preparation of high-surface-area CCMs. In this work, a surface of a compositionally complex FeCoNiCuZn alloy (CCA) was nitridated with subsequent anodization leading to morphological and compositional modifications. Notably, the electrochemical surface area and surface roughness as well as the electrocatalytic activity of the anodized material exhibit significant enhancement. Oxygen evolution reaction (OER) activity by the anodized CCN (CCN–AO) proceeds with remarkably small overpotential (233 mV) at 10 mA cm−2 in 1 M KOH. Experimental characterization indicates that the oxidation state of Co plays a critical role in the Fe–Co–Ni electrocatalyst. The developed approach and design strategy open up immense prospects in the preparation of a new, affordable, scalable and effective type of complex and high-performance electrocatalytic electrodes with tunable properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.