Abstract

In the oil development process, an immiscible third-phase slug can be injected to the formation temporarily to assist the water flooding, resulting in a three-phase flow underground. In this work, we study slug-assisted water flooding at the pore scale using the three-phase pseudopotential lattice Boltzmann model. We first briefly describe the three-phase pseudopotential model and propose a concise scheme to set the contact angles of the Janus droplet on the solid wall. Then, we simulate the slug-assisted water flooding process in different porous media structures, i.e., a single pore-throat channel, parallel throats, and a heterogeneous porous medium. The simulation results show that oil recovery can be improved effectively with the addition of the third-phase slug. The addition of the third phase results in much more interfacial interaction between different phases, which helps recover trapped oil in pore corners, narrow throats, and the high permeability zone in the porous medium. Moreover, the injection volume, injection timing, contact angle, and viscosity of the third phase influence the oil recovery in different ways. The injected slug can also be trapped in the porous medium, which may result in formation damage. The study explains the enhanced oil recovery mechanisms of slug-assisted water flooding at the pore scale and provides an effective way to design the injection scheme during industrial production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.