Abstract
Recently, hydrothermal coliquefaction of biomass and plastic waste has attracted considerable research interest. However, there is a notable gap in understanding the fundamental reaction mechanisms between biomass and plastics during coliquefaction. This study focused on the coliquefaction of biomass model compounds and plastic polymers using ReaxFF molecular dynamics simulations under both subcritical and supercritical water conditions. Molecular-level tracking and probing of the reaction mechanisms between biomass model compounds and plastics were conducted to purposefully enhance oil production. The study observed related radical reactions between by-product molecules, with detailed mechanisms primarily involving (1) ▪OH radicals released by aqueous phase molecules from biomolecules, transferring as H2O molecules and facilitating plastic depolymerization, and (2) C1–C4 radicals in the gaseous phase, emitted from biomolecule and plastic, colliding and subsequently recombining to form oil molecules. Moreover, the yield of multiple products from various mixtures were evaluated by considering the key reaction parameters including reaction temperature and feedstock blended ratio. An exploration into the effect of coliquefaction on oil yield was conducted to precisely identify the optimal coliquefaction conditions. The positive effect of coliquefaction was more pronounced between biomass model compounds and aromatic polymers compared to aliphatic polymers. Analysis of reaction mechanisms and product outcomes has shown that hydrothermal coliquefaction is a viable approach to improving oil production from multi-source organic solid waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.