Abstract

To meet the requirements of navigation devices in terms of weight, power consumption, and size, it is necessary to capture low-resolution images or transmit low-resolution images to a server for object detection. However, due to the lack of details and frequency information, even state-of-the-art detection methods face challenges in accurately identifying objects. To tackle this issue, we introduce a novel upsampling method termed multi-wave representation upsampling, accompanied by a training strategy aimed at reinstating high-frequency details and augmenting the precision of object detection. Finally, we conduct empirical experiments showing that compared to alternative methodologies, our proposed approach yields images exhibiting minimal disparities in frequency compared to high-resolution counterparts. Additionally, it exhibits superior performance across objects of varying scales, while simultaneously demonstrating reduced parameter count and enhanced computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.