Abstract

Photocatalytic oxygen molecular (O2) activation to generate reactive oxygen species (ROS) is a promising strategy for the oxidative degradation of organic pollutants. Herein, a porous S-doped g-C3N4 rod (S-g-CN-rod) was synthesized and applied to photocatalytic superoxide radicals (·O2-) evolution and rhodamine-B (RhB) degradation. The morphological, structural, and optical properties of all samples were investigated. DFT calculation demonstrated that the carbon site adjacent to S was energetically favorable for O2 adsorption, which was conducive to ·O2- evolution. The porous S-g-CN-rod exhibited an excellent photocatalytic ·O2- evolution rate of 268.2 μmol L−1 h−1, which was the main active species to degrade RhB. Conceivably, the porous S-g-CN-rod demonstrated exceptionally high efficiency of photocatalytic RhB degradation and achieved almost complete disposal of RhB (99.7 %) in only 30 min, which was higher than most reported photocatalysts. The experimental results and theoretical calculations demonstrated that the preeminent photocatalytic activities were ascribed to enhanced light-harvesting, improved migration and separation of photo-induced electrons, and the superior O2 adsorption and activation induced by S doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.