Abstract

On tropical soils, liming and balanced nutrient supply are essential to ensure high crop yield and quality. An adequate agronomic nutrient management should be a balanced nutrition and fertilizers are the key factor on supplying nutrients. Urea is the most commonly used fertilizer-N source, despite potential losses by NH3 volatilization. Thus, new fertilizers technologies are needed to support the increasing demand and avoid the low N use efficiency (NUE). The reduction of NH3-N volatilization can be achieved by the use of natural aluminosilicates with nitrogenous fertilizer materials. This review consolidates the current status on the subject and the experience with the application of aluminosilicates as a slow release plant-nutrient fertilizer. Volatilization losses of nitrogenous fertilizers on the soil surface could be reduced with addition of natural aluminosilicates. Clay minerals (zeolites) are widely used in many countries to reduce NH3 volatilization from amide N fertilizers, such as urea, besides several organic forms of nitrogenous sources. The reduction in ammonia losses by volatilization and the increased efficiency of N utilization and slow release nature of urea-zeolite mixtures when urea is used together with aluminosilicates was demonstrated in laboratory, greenhouse and field experiments with different crops and environments. These results indicate that aluminosilicates minerals used with urea mineral fertilizer can enhance the efficiency of this source by improving the nitrogen use through the control of retention of ammonium ion, contributing to increasd N uptake and crop yields.

Highlights

  • Building up of soil fertility, managing the availability of mineral nutrients in soil and efficient nutrient management are some of the key factors to improve crop productivity and sustainability of food security and well-being of humans without harming the environment [1]

  • The reduction in ammonia losses by volatilization and the increased efficiency of N utilization and slow release nature of urea-zeolite mixtures when urea is used together with aluminosilicates was demonstrated in laboratory, greenhouse and field experiments with different crops and environments

  • These results indicate that aluminosilicates minerals used with urea mineral fertilizer can enhance the efficiency of this source by improving the nitrogen use through the control of retention of ammonium ion, contributing to increasd N uptake and crop yields

Read more

Summary

Introduction

Building up of soil fertility, managing the availability of mineral nutrients in soil and efficient nutrient management are some of the key factors to improve crop productivity and sustainability of food security and well-being of humans without harming the environment [1]. As the tropical soils inherently poor in plant nutrients, liming of soils and balanced nutrient supply (N, P, K, Ca, Mg, S, B, Cu, Cl, Mo, Mn and Zn) are essential to ensure high crop yield and quality. Best agronomic practices include balanced nutrient management to supply all essential nutrients for optimum yields [2]. An array of strategies can be taken up to enhance the use efficiency of nutrients in the plant-soil-atmosphere system. This review presents research results and discusses the current status on the use of urea together with aluminosilicates as a slow release plant-nutrient fertilizer in order to reduce ammonia losses by volatilization, increase the N use efficiency and uptake through the control of retention of ammonium ion

Nitrogen Fertilizers
Enhanced Efficiency Fertilizers
Nitrogen Management through Zeolite Based Interventions
Results of Field and Laboratory Studies
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.