Abstract

The slow growth and difficulty in cultivating anammox bacteria limit the rapid start-up of anammox process and effective microbial enrichment. In this study, microbial electrolysis cell (MEC) was coupled with anammox to investigate the effects of different applying voltage methods on substrate removal efficiency and rates, microbial community structure, anammox metabolism and metabolic pathways. The results showed that applying voltage not only improved NH4+-N removal efficiency and removal rates, but also promoted electron transfer efficiency, key enzyme activity and extracellular polymeric substances (EPS) secretion in the systems. Step-up voltage was more conducive to the growth of Candidatus_Kuenenia in the cathode, which promoted the rapid start-up of anammox and treating wastewater with low ammonia concentration. The main metabolic pathway in step-up voltage operation was hydrazine to nitrogen, while in constant voltage operation was hydroxylamine oxidation pathway. These findings provided a new insight into the enhancement and operation of anammox system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call