Abstract

Network security is paramount in today's digital landscape, where cyberthreats continue to evolve and pose significant risks. We propose a DPDK-based scanner based on a study on advanced port scanning techniques to improve network visibility and security. The traditional port scanning methods suffer from speed, accuracy, and efficiency limitations, hindering effective threat detection and mitigation. In this paper, we develop and implement advanced techniques such as protocol-specific probes and evasive scan techniques to enhance the visibility and security of networks. We also evaluate network scanning performance and scalability using programmable hardware, including smart NICs and DPDK-based frameworks, along with in-network processing, data parallelization, and hardware acceleration. Additionally, we leverage application-level protocol parsing to accelerate network discovery and mapping, analyzing protocol-specific information. In our experimental evaluation, our proposed DPDK-based scanner demonstrated a significant improvement in target scanning speed, achieving a 2× speedup compared to other scanners in a target scanning environment. Furthermore, our scanner achieved a high accuracy rate of 99.5% in identifying open ports. Notably, our solution also exhibited a lower CPU and memory utilization, with an approximately 40% reduction compared to alternative scanners. These results highlight the effectiveness and efficiency of our proposed scanning techniques in enhancing network visibility and security. The outcomes of this research contribute to the field by providing insights and innovations to improve network security, identify vulnerabilities, and optimize network performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.