Abstract

Muscular dystrophies (MDs) are caused by genetic mutations in over 30 different genes, many of which encode for proteins essential for the integrity of muscle cell structure and membrane. Their deficiencies cause the muscle vulnerable to mechanical and biochemical damages, leading to membrane leakage, dystrophic pathology, and eventual loss of muscle cells. Recent studies report that MG53, a muscle-specific TRIM-family protein, plays an essential role in sarcolemmal membrane repair. Here, we show that systemic delivery and muscle-specific overexpression of human MG53 gene by recombinant adeno-associated virus (AAV) vectors enhanced membrane repair, ameliorated pathology, and improved muscle and heart functions in δ-sarcoglycan (δ-SG)-deficient TO-2 hamsters, an animal model of MD and congestive heart failure. In addition, MG53 overexpression increased dysferlin level and facilitated its trafficking to muscle membrane through participation of caveolin-3. MG53 also protected muscle cells by activating cell survival kinases, such as Akt, extracellular signal-regulated kinases (ERK1/2), and glycogen synthase kinase-3β (GSK-3β) and inhibiting proapoptotic protein Bax. Our results suggest that enhancing the muscle membrane repair machinery could be a novel therapeutic approach for MD and cardiomyopathy, as demonstrated here in the limb girdle MD (LGMD) 2F model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.