Abstract

The clinical therapy for treating acute myocardial infarction is primary percutaneous coronary intervention (PPCI). PPCI is effective at reperfusing the heart, however the rapid re-introduction of blood can cause ischemia-reperfusion (I/R). Reperfusion injury is responsible for up to half of the final myocardial damage, but there are no pharmacological interventions to reduce I/R. We previously demonstrated that inhibiting monocarboxylate transporter 4 (MCT4) and re-directing pyruvate towards oxidation can blunt hypertrophy. We hypothesized this pathway might be important during I/R. Here, we establish that the pyruvate-lactate axis plays a role in determining myocardial salvage following injury. Post-I/R, the mitochondrial pyruvate carrier (MPC), required for pyruvate oxidation, is upregulated in the surviving myocardium. In cardiomyocytes lacking the MPC, there was increased cell death and less salvage after I/R, which was associated with an upregulation of MCT4. To determine the importance of pyruvate oxidation, we inhibited MCT4 with a small-molecule drug (VB124) at reperfusion. This strategy normalized reactive oxygen species (ROS), mitochondrial membrane potential (∆Ψ), and Ca2+, increased pyruvate entry to TCA cycle, increased oxygen consumption, improved myocardial salvage and functional outcomes following I/R. Our data suggests normalizing pyruvate-lactate metabolism by inhibiting MCT4 is a promising therapy to mitigate I/R injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.