Abstract

Microbial fuel cells (MFCs) represent an avenue for harnessing renewable energy from waste substrates; however, their capacity for electrical energy generation remains limited. Therefore, numerous investigations have sought to improve this capability through various modifications, including alterations to the anode, cathode, and chamber configuration. The supplementation of metal ions, such as Cr, Co, and Cu, as micronutrients has emerged as an effective method to improve MFC performance. This study aimed to investigate the effects of Mg2+ and Ca2+ as eco-friendly micronutrients for accelerating electrogenic bacteria growth and improving the generation of electricity in the MFC. These findings revealed a significant improvement in MFC performance following the addition of these metal ions, attributed to their acceleration of Shewanella oneidensis MR-1 growth. Mg2+ succeeds in generating a maximum voltage of 100 mV at 1 and 2 μM Mg2+ (3 times higher than Ca2+), a current density of 25,000 mA/m2 (18 times higher than Ca2+), and a power density of 1400 mW/m2 (2.5 times higher than Ca2+). This finding proves that Mg2+ has a positive impact on generating electricity in MFC. Even at minimal concentrations, this study observed increased electric power density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.