Abstract

It is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or vice versa by harnessing the metabolic processes of bacteria to valorise a range of waste products including greenhouse gases (GHGs). Part I () introduced the EET pathways, their limitations and applications. Here in Part II, we outline the strategies researchers have used to modulate microbial electron transfer, through synthetic biology and biohybrid approaches and present the conclusions and future directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call