Abstract
Polyurethanes (PUs) are a class of versatile engineering materials synthesized by the reaction between polyol, isocyanate, and chain extender as the hardener. Among various cellulose derivatives, cellulose acetate (CA) possessed unique features such as excellent mechanical properties, good thermal stability, tailorable surface chemistry, and can be used as hydroxyl providers to enhance the properties of PUs. Our goal is to develop a simple method to prepare PUs by using varying weight ratio of CA as the chain extender or crosslinking agent. PUs modified with varying weight percentage of CA (5 %, 10 %, and 30 %) (based on total parts per weight of poly(tetramethylene oxide) (PTMO) and isocyanate) were compared with PUs modified with 1,4-butanediol (BD), acting as the control. The morphological, chemical structural, thermal stability, and mechanical properties of the modified PU CA polymer were investigated thoroughly. The findings from this study found that modified PUs with CA possessed higher thermal stability. The PUs with 10 % of CA as chain extender was found to be the optimal percentage for the preparation of PUs with the highest tensile strength and elongation properties. However, the utilisation of higher weight percentage of CA reduced the elongation property of the modified PUs due to excessive crosslinking effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.