Abstract

Arabinoxylan (AX)-based films can improve the mechanical characteristics of biodegradable materials when utilized for food packaging. However, the mechanical properties of AX films for food packaging applications require thorough investigation to establish their viability. In this study, AX was extracted from corn bran coproducts of dry-milling (DCB), wet-milling (WCB), and dried distiller's grains with solubles (DDGS) using an acid-alkali method. Packaging materials were produced using these AX extracts, each combined with laccase and sorbitol, forming the basis for three different films. These films were then modified by immersing the surface in a lipase-acetate solution. We evaluated their mechanical characteristics, including thickness, tensile properties, tear resistance, and puncture resistance. The thickness and tensile properties of the modified AX films derived from DCB and DDGS showed significant improvements (p < 0.05) compared to the unmodified AX films. In contrast, the modified AX films from WCB showed no significant changes (p > 0.05) in thickness and tensile properties compared to the unmodified WCB AX films. A significant increase in tear resistance (p < 0.05) was observed in all modified AX films after immersion in the lipase-acetate mixture. While puncture resistance was enhanced in the modified AX films, the improvement was not statistically significant (p > 0.05) compared to the unmodified films. The presence of hydroxyl (OH) and carbonyl (CO) groups on the surfaces of AX films from DCB and DDGS, modified by the lipase-acetate solution, suggests excellent biodegradability properties. The modification process positively affected the AX films, rendering them more bendable, flexible, and resistant to deformation when stretched, compared to the unmodified AX films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call