Abstract

Miniaturization is introduced as a novel methodology to enhance mass transport in a chemical vapor deposition process. As a result, amorphous carbon formation during the synthesis of single-walled carbon nanotubes (SWNTs) can be deterred. Miniaturization also maintains a laminar flow pattern to ensure a stable growth condition. A system with micrometer-sized reaction chambers has been constructed to experimentally verify this concept. The results show that clean and small-diameter SWNTs with approximately millimeter length can be quickly synthesized using ethylene as the source gas. Similar experimental parameters in a conventional large-scale system failed to produce SWNTs with comparable quality due to catalyst poisoning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.