Abstract
<span lang="EN-US">The industrial sector is undergoing a substantial transformation by embracing predictive maintenance approaches, aiming to minimize downtime and reduce operational expenses. This transformative shift involves the incorporation of machine learning techniques to refine the accuracy of predicting machinery failures. In this article, we delve into an in-depth exploration of machine failure prediction, employing a hybrid model amalgamating long short-term memory (LSTM) and support vector machine (SVM). Our comprehensive study meticulously assesses the hybrid model’s performance, comparing it with standalone LSTM and SVM models across three distinct datasets. The results showcase that the hybrid model outperformed, providing the modest dependable, and highest F1-score values in our evaluation.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.