Abstract

Present-day Li+ storage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability. Herein, based on a Ca2+ substituted Mg2Nb34O87 anode material, we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability. The resulting Mg1.5Ca0.5Nb34O87 shows the smallest ionic packing factor among Wadsley–Roth niobate materials. Compared with Mg2Nb34O87, Mg1.5Ca0.5Nb34O87 delivers a 1.6 times faster Li​+ ​diffusivity at −20 ​°C, leading to 56% larger reversible capacity and 1.5 times higher rate capability. Furthermore, Mg1.5Ca0.5Nb34O87 exhibits an 11% smaller maximum unit-cell volume expansion upon lithiation at 60 ​°C, resulting in better cyclic stability; at 10C after 500 cycles, it has a 7.1% higher capacity retention, and its reversible capacity at 10C is 57% larger. Therefore, Mg1.5Ca0.5Nb34O87 is an all-climate anode material capable of working at harsh temperatures, even when its particle sizes are in the order of micrometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call