Abstract
The rapidly growing demand for portable electronics, electric vehicles, and grid storage drives the pursuit of high-performance electrical energy storage (EES). A key strategy for improving EES performance is exploiting nanostructured electrodes that present nanoconfined environments of adjacent electrolytes, with the goal to decrease ion diffusion paths and increase active surface areas. However, fundamental gaps persist in understanding the interface-governed electrochemistry in such nanoconfined geometries, in part because of the imprecise and variable dimension control. Here, we report quantification of lithium insertion under nanoconfinement of the electrolyte in a precise lithography-patterned nanofluidic cell. We show a mechanism that enhances ion insertion under nanoconfinement, namely, selective ion accumulation when the confinement length is comparable to the electrical double layer thickness. The nanofabrication approach with uniform and accurate dimensional control provides a versatile model system to explore fundamental mechanisms of nanoscale electrochemistry, which could have an impact on practical energy storage systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.