Abstract
The abundant supply of biosynthetic precursors and product compatibility with the intracellular environment play important roles for microbial isoprenoid production. In this study, we tailor to both of these requirements by introducing the two-step isopentenol utilization pathway (IUP) to augment the native pathway in the oleaginous yeast Yarrowia lipolytica. With shortcut access to the common isoprenoid precursor, isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), IUP is capable of elevating IPP + DMAPP levels by 15.7-fold compared to the mevalonate pathway alone. The increase in IPP + DMAPP levels can directly lead to better isoprenoid synthesis, which is illustrated using lycopene as a model compound. Moreover, we also demonstrate that higher lipid contents in the cells correlate with improved intracellular lycopene production, suggesting the importance of having a substantial hydrophobic environment to sequester isoprenoids. Combining these strategies with further genetic and fermentation optimizations, we achieved a final lycopene titer of 4.2 g/L. Overall, these strategies hold great potential for strengthening the synthesis of long-chain isoprenoids and fat-soluble natural products in microbes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.