Abstract

Chemically compatible additives were utilized to increase the ionic conductivity of polyethylene melts. When subjected to unconfined electrospinning, a predictable and significant decrease in the resultant fiber diameter with enhanced melt conductivity was observed. This generalized approach was confirmed for viscous melts, varying in conductivity over five orders of magnitude and viscosity 5×, from multiple commercial polyethylene formulations with various additives. These experimental results are connected to theory for the relevant length scales of capillary length, jet spacing, and jet radius. In particular, jet radius scales as conductivity to the −1/4 power. Fitting experimental fiber radius vs ionic conductivity data results in a similar power law exponent (−0.29). This trend, occurring at orders of magnitude higher viscosity and six orders of magnitude lower conductivity, is similar to results from needle-based, solution phase electrospinning, suggesting the generality of the effect. The connection between larger length scales, such as the distance between jets and the thickness of the film at the plate edge, and fluid properties (surface tension, viscosity, and conductivity) is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.