Abstract

AbstractMetal sulfides materials are promising anode candidates for Na+ storage due to their low cost and high theoretical capacity, while the complex phase transition and inevitable volume expansion during cycling restrain their practical applications. Herein, a simple one‐pot manipulation strategy was designed to construct Co9S8 nanoparticles strongly encapsulated in carbon nanotubes (Co9S8@C/NTs) composite structure with enhanced structural stability and reaction kinetics, resulting in greatly improved Na+ storage performance. Specifically, the obtained Co9S8@C/NTs could exhibit a remarkable capacity of 500 mAh g−1 at 0.5 A g−1 after 100 cycles and exceptional cycling stability over 600 cycles with 88 % capacity retention at 1 A g−1. Furthermore, the theoretical calculations combined with systematic characterizations confirm that the strong interaction between Co9S8 and the carbon matrix could greatly enhance the Na+ adsorption ability and facilitate the electron transfer dynamics for superior Na+ storage capability. More importantly, the full cell device can deliver an outstanding energy density of 144.32 Wh kg−1 and a decent cycling life with 82 % capacity retention of almost 100 cycles at 0.1 A g−1. This work could provide more valuable insights for designing advanced metal sulfide nanocomposites and demonstrate fascinating prospects for commercial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.