Abstract

Earth Science researchers require access to integrated, cross-disciplinary data in order to answer critical research questions. Partially due to these science drivers, it is common for disciplinary data systems to expand from their original scope in order to accommodate collaborative research. The result is multiple disparate databases with overlapping but incompatible data. In order to enable more complete data integration and analysis, the Observations Data Model Version 2 (ODM2) was developed to be a general information model, with one of its major goals to integrate data collected by in situ sensors with those by ex-situ analyses of field specimens. Four use cases with different science drivers and disciplines have adopted ODM2 because of benefits to their users. The disciplines behind the four cases are diverse – hydrology, rock geochemistry, soil geochemistry, and biogeochemistry. For each case, we outline the benefits, challenges, and rationale for adopting ODM2. In each case, the decision to implement ODM2 was made to increase interoperability and expand data and metadata capabilities. One of the common benefits was the ability to use the flexible handling and comprehensive description of specimens and data collection sites in ODM2’s sampling feature concept. We also summarize best practices for implementing ODM2 based on the experience of these initial adopters. The descriptions here should help other potential adopters of ODM2 implement their own instances or to modify ODM2 to suit their needs.

Highlights

  • The magnitude and diversity of Earth science observations is increasing exponentially

  • This paper provides a wide-ranging illustration and discussion of the practical challenges faced when implementing the ODM2 information model, and more generally when migrating data to broader data models

  • It is anticipated that an up-front investment in making disparate data systems interoperable through adoption of a common information model will lead to significant returns, including enhanced metadata for data discovery, better accessibility through more robust database instances, interoperability through common data descriptions and vocabularies, and enhanced analyses supported by more descriptive metadata

Read more

Summary

Introduction

The magnitude and diversity of Earth science observations is increasing exponentially This data richness is fueling new and novel studies that advance our understanding of Earth and environmental processes; tools for integrating, efficiently managing, properly documenting, and making such data accessible to diverse groups of collaborating scientists are still in early stages. The need for such tools is clearly shown by large collaborative projects such as the Critical Zone Observatories (e.g., Brantley et al, 2007). We anticipate that this work will help other potential adopters of ODM2 implement their own instances or modify ODM2 to suit their needs

Background
Result
Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.