Abstract

Achieving a stable interface between sulfide solid-state electrolytes (SSEs) and high-voltage Ni-rich oxide cathodes is crucial for enhancing the electrochemical performance of all-solid-state batteries (ASSBs). However, addressing the interface challenges through surface coating modifications remains a significant hurdle. In this work, a straightforward modification approach is proposed to achieve a highly stable interface by surface dual doping of Zr and F in LiNi0.83Co0.12Mn0.05O2 (NCM83) cathodes via acid washing followed by annealing. First-principle calculations demonstrate the thermodynamic stability of Zr-F doped NCM83, effectively inhibiting the formation of unfavorable interfaces with decomposition products. The modified NCM83-1% ZrF cathode exhibits exceptional long-cycle stability, retaining 85.1% of its capacity after 1000 cycles at 0.5C rate. This simple and scalable modification strategy offers a new perspective for the design of high-performance sulfide-based ASSBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.