Abstract

Fluorescence imaging has been used to evaluate the physiological features of renal ischemia in animal model. However, the fluorophore distribution details of the ischemia model could not be fully represented due to the limited dynamic range of the charged-couple device. A high-dynamic-range (HDR) strategy was adopted in renal ischemia fluorescence imaging, both ex vivo and in vivo. The HDR strategy successfully combined ischemia relevant biological features that could only be captured with different exposure times, and then presented these features in the HDR results. The HDR results effectively highlighted the renal ischemic areas with relatively better perfusion and diminished the saturation that resulted from long exposure time. The relative fluorescence intensities of the ischemic kidneys and the image entropy values were significantly higher in the HDR images than in the original images, therefore enhancing the visualization of the renal ischemia model. The results suggest that HDR could serve as a postprocessing strategy to enhance the assessment of in vivo renal ischemia, and HDR fluorescence molecular imaging could be a valuable imaging tool for future studies of clinical ischemia detection and evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call