Abstract

Current cytotoxic T lymphocyte (CTL) activating immunotherapy requires a major histocompatibility complex I (MHC-I)-mediated presentation of tumor-associated antigens, which malfunctions in around half of patients with triple-negative breast cancer (TNBC). Here, we create a LCL161-loaded macrophage membrane decorated nanoparticle (LMN) for immunotherapy of MHC-I-deficient TNBC. SIRPα on the macrophage membrane helps LMNs recognize CD47-expressing cancer cells for targeted delivery of LCL161, which induces the release of high mobility group protein 1 and proinflammatory cytokines from cancer cells. The released cytokines and high mobility group protein 1 activate antitumor immunity by increasing the intratumoral density of the phagocytic macrophage subtype by 15 times and elevating the intratumoral concentration of CTL lymphotoxin by 4.6 folds. LMNs also block CD47-mediated phagocytosis suppression. LMNs inhibit the growth of MHC-I-deficient TNBC tumors, as well as those resistant to combined therapy of anti-PDL1 antibody and albumin-bound paclitaxel, and prolong the survival of animals, during which process CTLs also play important roles. This macrophage membrane-decorated nanoparticle presents a generalizable platform for increasing macrophage-mediated antitumor immunity for effective immunotherapy of MHC-I-deficient cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call