Abstract
In today’s digital age, it is crucial to secure the flow of information to protect data and information from being hacked during transmission or storage. To address this need, we present a new image encryption technique that combines the Kronecker xor product, Hill cipher, and sigmoid logistic Map. Our proposed algorithm begins by shifting the values in each row of the state matrix to the left by a predetermined number of positions, then encrypting the resulting image using the Hill Cipher. The top value of each odd or even column is used to perform an xor operation with all values in the corresponding even or odd column, excluding the top value. The resulting image is then diffused using a sigmoid logistic map and subjected to the Kronecker xor product operation among the pixels to create a secure image. The image is then diffused again with other keys from the sigmoid logistic map for the final product. We compared our proposed method to recent work and found it to be safe and efficient in terms of performance after conducting statistical analysis, differential attack analysis, brute force attack analysis, and information entropy analysis. The results demonstrate that our proposed method is robust, lightweight, and fast in performance, meets the requirements for encryption and decryption, and is resistant to various attacks.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.