Abstract

Passive sensors, operating in the visible (VIS) spectrum, have widely been used towards the trans-disciplinary documentation, understanding, and protection of tangible cultural heritage (CH). Although, many heritage science fields benefit significantly from additional information that can be acquired in the near-infrared (NIR) spectrum. NIR imagery, captured for heritage applications, has been mostly investigated with two-dimensional (2D) approaches or by 2D-to-three-dimensional (3D) integrations following complicated techniques, including expensive imaging sensors and setups. The availability of high-resolution digital modified cameras and software implementations of Structure-from-Motion (SfM) and Multiple-View-Stereo (MVS) algorithms, has made the production of models with spectral textures more feasible than ever. In this research, a short review of image-based 3D modeling with NIR data is attempted. The authors aim to investigate the use of near-infrared imagery from relatively low-cost modified sensors for heritage digitization, alongside the usefulness of spectral textures produced, oriented towards heritage science. Therefore, thorough experimentation and assessment with different software are conducted and presented, utilizing NIR imagery and SfM/MVS methods. Dense 3D point clouds and textured meshes have been produced and evaluated for their metric validity and radiometric quality, comparing to results produced from VIS imagery. The datasets employed come from heritage assets of different dimensions, from an archaeological site to a medium-sized artwork, to evaluate implementation on different levels of accuracy and specifications of texture resolution.

Highlights

  • Close-Range Photogrammetry (CRP) and Technical Photography (TP) constitute two digital-recording techniques that have been widely used in the framework of the integrated documentation and study of tangible cultural heritage (CH)

  • This paper suggested how the use of near infrared imagery from modified consumer DSLR

  • This paper suggested how the use of near infrared imagery from modified consumer DSLR cameras can be used to enhance the geometry and texture of 3D heritage models at different scales, using image-based modeling software

Read more

Summary

Introduction

Close-Range Photogrammetry (CRP) and Technical Photography (TP) constitute two digital-recording techniques that have been widely used in the framework of the integrated documentation and study of tangible CH. The capacity of CRP to digitize three-dimensional (3D) geometrical features, providing accurate representations of the visible surfaces, along with its versatility, makes feasible the interdisciplinary analyses of CH. This technique can provide valuable textural information for the examination of the historical surfaces’ characteristics [1]. Near-infrared (NIR) imaging has been implemented to enhance archaeological observation [16], to determine the state of conservation of buildings [17], to inspect mural paintings [18], to assist the identification of pigments [19], to investigate underdrawings of panel paintings [20], underprintings [21], and palimpsests [22], to examine rock art [23], and to study feature characteristics of painted artifacts [24]. Applications of integrated heritage CRP and TP can be found in recent bibliography, showcasing a promising combination that should be further evaluated

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.