Abstract

Hydrogen peroxide (H2O2) is an important chemical with a diverse array of applications. However, the existing scenario of centralized high-concentration production is in contrast with the demand for low-concentration decentralized production. In this context, the on-site green and efficient two-electron oxygen reduction reaction (ORR) for H2O2 production has developed into a promising synthetic approach. The development of low-cost, highly active, and durable advanced catalysts is the core requirement for realizing this approach. In recent years, single-atom catalysts (SACs) have become a research hotspot owing to their maximum atom utilization efficiency, tunable electronic structure, and exceptional catalytic performance. The coordination engineering of SACs is one of the key strategies to unlock their full potential for electrocatalytic H2O2 synthesis and holds significant research value. Despite considerable efforts, precisely controlling the electronic structure of active sites in SACs remains challenging. Therefore, this review summarizes the latest progress in coordination engineering strategies for SACs, aiming to elucidate the relevance between structure and performance. Our goal is to provide valuable guidance and insights to aid in the design and development of high-performance SACs for electrocatalytic H2O2 synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call