Abstract
MoS2 is a promising candidate for hydrogen evolution reaction (HER), while its active sites are mainly distributed on the edge sites rather than the basal plane sites. Herein, a strategy to overcome the inertness of the MoS2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory (DFT) computations. The ab initio molecular dynamics (AIMD) simulation on B@MoS2 suggests high thermodynamic and kinetic stability. We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering. The optimal stress of −7% can achieve a nearly zero value of ΔGH (~ −0.084 eV), which is close to that of the ideal Pt-SACs for HER. The novel HER activity is attributed to (i) the B-doping brings the active site to the basal plane of MoS2 and reduces the band-gap, thereby increasing the conductivity; (ii) the compressive stress regulates the number of charge transfer between (H)-(B)-(MoS2), weakening the adsorption energy of hydrogen on B@MoS2. Moreover, we constructed a SiN/B@MoS2 heterojunction, which introduces an 8.6% compressive stress for B@MoS2 and yields an ideal ΔGH. This work provides an effective means to achieve high intrinsic HER activity for MoS2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.