Abstract

The goal of machine vision is to develop human-like visual abilities; however, it is unclear whether understanding human vision will advance machines. Here, it exemplifies two key conceptual advancements: It first shows that the majority of computer vision models consistently differ from the way that individuals perceive objects. To do this, a significant dataset of human perceptions of the separations of isolated things was acquired, and it was then examined to see if a well-known machine vision algorithm can predict these perceptions. The best algorithms can account for the majority of the volatility in the intuitive data, but every algorithm we verified repeatedly misjudged several different object types. Second, it shows that removing these systemic biases can considerably increase classification accuracy. For instance, machine techniques overestimated detachments between symmetric objects in comparison to human vision. These results illustration that methodical differences between human and machine vision can be identified and improved.In order to improve the machine vision, employing a deep learning algorithm Visual Geometry Group (VGG 16) with planar reflection symmetry (PRS-Net) technique. VGG 16 is a convolutional neural network with 16 deep layers. VGG pre-trained architecture can point out visual features present in the image. The planar reflection symmetry concept is appended with VGG to create a hybrid environment that can improve machine vision significantly by 90%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.