Abstract

The polymerase-associated factor 1 complex (PAF1C) is a key, post-initiation transcriptional regulator of both promoter-proximal pausing and productive elongation catalyzed by RNA Pol II and is also involved in transcriptional repression of viral gene expression during human immunodeficiency virus-1 (HIV-1) latency. Using a molecular docking-based compound screen in silico and global sequencing-based candidate evaluation in vivo, we identified a first-in-class, small-molecule inhibitor of PAF1C (iPAF1C) that disrupts PAF1 chromatin occupancy and induces global release of promoter-proximal paused RNA Pol II into gene bodies. Transcriptomic analysis revealed that iPAF1C treatment mimics acute PAF1 subunit depletion and impairs RNA Pol II pausing at heat shock-down-regulated genes. Furthermore, iPAF1C enhances the activity of diverse HIV-1 latency reversal agents both in cell line latency models and in primary cells from persons living with HIV-1. In sum, this study demonstrates that efficient disruption of PAF1C by a first-in-class, small-molecule inhibitor may have therapeutic potential for improving current HIV-1 latency reversal strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call