Abstract

Ganoderma lucidum is known for its bioactive compounds, such as polysaccharides and triterpenoids, which are crucial in food and medicine. However, liquid fermentation encounters challenges in terms of strain differentiation and stability. In this research, we employed atmospheric room temperature plasma mutation and a microbial microdroplet culture system to identify strains with enhanced biomass and triterpenoid production. The three mutant strains, YB05, YB09, and YB18, exhibited accelerated growth rates and antagonized the initial strain G0023 more effectively than the controls. Notably, YB18 displayed the fastest growth, with a 17.25% increase in colony radius. Shake flask cultivation demonstrated that, compared with the initial strain, YB05 and YB18 had 26.33% and 17.85% greater biomass, respectively. Moreover, the triterpenoid production of YB05 and YB18 surpassed that of the control by 32.10% and 15.72%, respectively, as confirmed by colorimetric detection. Importantly, these mutant strains remained stable for five generations. This study revealed a comprehensive screening system utilizing atmospheric pressure, room temperature plasma mutation technology and microbial droplet cultivation. This innovative approach offers a promising pathway for obtaining advantageous Ganoderma strains for liquid fermentation. The methodology of atmospheric room temperature plasma mutation and microbial microdroplet culture systems is detailed for better comprehension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.