Abstract

Health assessments have long been a significant research topic within the field of health psychology. By analyzing the results of subject scales, these assessments effectively evaluate physical and mental health status. Traditional methods, based on statistical analysis, are limited in accuracy due to their reliance on linear scoring methods. Meanwhile, machine learning approaches, despite their potential, have not been widely adopted due to their poor interpretability and dependence on large amounts of training data. Recently, large language models (LLMs) have gained widespread attention for their powerful natural language understanding capabilities, offering a viable solution to these issues. This study investigates the application of LLMs in enhancing physical and mental health assessments, introducing ScaleLLM. ScaleLLM employs language and knowledge alignment to turn LLMs into expert evaluators for health psychology scales. Experimental results indicate that ScaleLLM can improve the accuracy and interpretability of health assessments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.