Abstract

Efficient enhancement of harmonic brightness near the cutoff region is achieved by employing laser pulses with a small positive chirp in theory, where the laser intensity and frequency near the peak of the laser pulse are almost unchanged relative to the chirp-free field. The improvement of harmonic brightness is achieved under the condition that the ionization probability is almost unchanged. Through the analysis of the harmonics contributed by the rising and falling parts of the laser pulse, we have uncovered a "frequency compensation" mechanism that leads to an enhanced harmonic brightness near the cutoff region. Under appropriate chirp parameters, the harmonics contributed by the rising and falling parts can be constructively interfered in a smaller frequency range with greater intensity, thereby obtaining harmonics with good monochromaticity and high brightness. This study explains the mechanism of harmonic brightness enhancement from a new perspective, and provides a new idea for harmonic regulation without changing the ionization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call