Abstract

Improving the effectiveness of green supply chains is a critical step towards minimizing waste, optimizing resource use, and reducing the environmental impact of business operations. Sustainable practices should be implemented throughout the entire supply chain, from product design and procurement to production and transportation, in order to achieve these goals. By doing so, businesses can not only improve their environmental performance but also reduce costs, increase customer satisfaction, and gain a competitive advantage in the market. However, due to the existence of competing characteristics, imprecise information, and a lack of knowledge, selecting the appropriate green provider is a complex and unpredictable decision-making issue. The primary objective of a linear-diophantine fuzzy (LiDF) framework is to assist decision makers in selecting the optimal course of action. This paper introduces several novel aggregation operators (AOs), namely the linear Diophantine fuzzy soft-max average (LiDFSMA) and the linear Diophantine fuzzy soft-max geometric (LiDFSMG) operators. The proposed method is then demonstrated through a simple example of a green supplier optimization technique containing linear Diophantine fuzzy content, showing the utility and applicability of the approach. Overall, the proposed LiDF framework and AOs can aid decision makers in selecting the most suitable green provider, thereby enhancing the efficiency of green supply chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.