Abstract
Graphene-based materials have great potential for applications in many fields, but their poor dispersion in polar solvents and chemical inertness require improvements. Low-temperature plasma allows the precise modification of materials, improving the physicochemical properties of the surface and thus creating the possibility of their potential use. Plasma treatment offers the possibility of introducing oxygen functional groups simply, rapidly, and in a controlled way. In this work, a systematic investigation of the effect of plasma modification on graphene nanoplatelets has been carried out to determine the optimal plasma parameters, especially the exposure time, for introducing the highest amount of oxygen functional groups on a surface. Different gases (O2, CO2, air, Ar, and C2H4) were used for this purpose. The chemical nature of the introduced oxygen-containing functionalities was characterized by X-ray photoelectron spectroscopy, and the structural properties of the materials were studied by Raman spectroscopy. The plasma-induced changes have been shown to evolve as the surface functionalities observed after plasma treatment are unstable. The immersion of the materials in liquids was carried out to check the reactivity of carbons in postplasma reactions. Stabilization of the material's surface after plasma treatment using CH3COOH was the most effective for introducing oxygen functional groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.