Abstract
The surface mechanical attrition treatment (SMAT) process was applied to pure Cu at both cryogenic and room temperatures. The cryogenic SMAT process resulted in a 60% reduction of grain size in the polycrystalline microstructure compared to that at room temperature. The level of grain refinement is related to a transition in the dominant deformation mechanism during SMAT from a dislocation-mediated behavior at room temperature to a twinning/shear band-mediated behavior at cryogenic temperatures, which also helps to suppress thermally activated processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.