Abstract

Spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) has been proven to be a cost-effective and efficient tool for monitoring the Earth’s surface soil moisture (SSM) with unparalleled spatial and temporal resolution. However, the accuracy and reliability of GNSS-R SSM estimation are affected by surface vegetation and roughness. In this study, the sensitivity of delay Doppler map (DDM)-derived effective reflectivity to SSM is analyzed and validated. The individual effective reflectivity is projected onto the 36 km × 36 km Equal-Area Scalable Earth-Grid 2.0 (EASE-Grid2) to form the observation image, which is used to construct a global GNSS-R SSM retrieval model with the SMAP SSM serving as the reference value. In order to improve the accuracy of retrieved SSM from CYGNSS, the effective reflectivity is corrected using vegetation opacity and roughness coefficient parameters from SMAP products. Additionally, the impacts of vegetation and roughness on the estimated SSM were comprehensively evaluated. The results demonstrate that the accuracy of SSM retrieved by GNSS-R is improved with correcting vegetation over different types of vegetation-covered areas. The retrieval algorithm achieves an accuracy of 0.046 cm3cm−3, resulting in a mean improvement of 4.4%. Validation of the retrieval algorithm through in situ measurements confirms its stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call