Abstract

In drug discovery, it is crucial to assess the drug-target binding affinity (DTA). Although molecular docking is widely used, computational efficiency limits its application in large-scale virtual screening. Deep learning-based methods learn virtual scoring functions from labeled datasets and can quickly predict affinity. However, there are three limitations. First, existing methods only consider the atom-bond graph or one-dimensional sequence representations of compounds, ignoring the information about functional groups (pharmacophores) with specific biological activities. Second, relying on limited labeled datasets fails to learn comprehensive embedding representations of compounds and proteins, resulting in poor generalization performance in complex scenarios. Third, existing feature fusion methods cannot adequately capture contextual interaction information. Therefore, we propose a novel DTA prediction method named HeteroDTA. Specifically, a multi-view compound feature extraction module is constructed to model the atom-bond graph and pharmacophore graph. The residue concat graph and protein sequence are also utilized to model protein structure and function. Moreover, to enhance the generalization capability and reduce the dependence on task-specific labeled data, pre-trained models are utilized to initialize the atomic features of the compounds and the embedding representations of the protein sequence. A context-aware nonlinear feature fusion method is also proposed to learn interaction patterns between compounds and proteins. Experimental results on public benchmark datasets show that HeteroDTA significantly outperforms existing methods. In addition, HeteroDTA shows excellent generalization performance in cold-start experiments and superiority in the representation learning ability of drug-target pairs. Finally, the effectiveness of HeteroDTA is demonstrated in a real-world drug discovery study. The source code and data are available at https://github.com/daydayupzzl/HeteroDTA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.