Abstract

Transcriptome-wide association studies (TWAS) aim to uncover genotype-phenotype relationships through a two-stage procedure: predicting gene expression from genotypes using an expression quantitative trait locus (eQTL) data set, then testing the predicted expression for trait associations. Accurate gene expression prediction in stage 1 is crucial, as it directly impacts the power to identify associations in stage 2. Currently, the first stage of such studies is primarily conducted using linear models like elastic net regression, which fail to capture the nonlinear relationships inherent in biological systems. Deep learning methods have the potential to model such nonlinear effects, but have yet to demonstrably outperform linear methods at this task. To address this gap, we propose a new deep learning architecture to predict gene expression from genotypic variation across individuals. Our method utilizes a learnable input scaling layer in conjunction with a convolutional encoder to capture nonlinear effects and higher-order interactions without compromising on interpretability. We further augment this approach to allow for parameter sharing across multiple networks, enabling us to utilize prior information for individual variants in the form of functional annotations. Evaluations on real-world genomic data show that our method consistently outperforms elastic net regression across a large set of heritable genes. Furthermore, our model statistically significantly improved predictive performance by leveraging functional annotations, whereas elastic net regression failed to show equivalent gains when using the same information, suggesting that our method can capture nonlinear functional information beyond the capability of linear models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.