Abstract

AbstractHollow nanostructures offer great potential for plasmonic applications due to their strong and highly tunable localized surface plasmon resonance. The relationship between the plasmonic properties and geometry of hollow nanoparticles, such as core‐shell size ratio, concentricity of the cavity and porosity of the wall, is well documented. Nanoscale galvanic replacement provides a simple, versatile and powerful route for the preparation of such hollow structures. Here we demonstrate how the efficiency of reductant‐assisted galvanic replacement processes can be enhanced by controlling the degree of hydration and hydrolysis of the metal ion precursor using pH and pL as key control parameters (by analogy to pH, the letter p in the expression pL is used to indicate the decimal cologarithm associated with the concentration of the ligand L). Adjusting precursor speciation prior to the sacrificial template's hollowing process offers a new strategy to tune the morphology and optical properties of plasmonic hollow nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call