Abstract

A theoretical scheme is proposed to enhance the sensitivity of force sensors with quantum non-demolition measurement (QND) in an optomechanical setup assisted by four-tone optical driving and an optical parametric amplifier (OPA). With the help of special drive, the system can be simplified as the typical type of QND for force sensing, so that the backaction noise can be evaded to surpass the standard quantum limit. Besides, the added noise can be suppressed owing to the modified optical susceptibility resulting from the OPA. By introducing two oscillators coupling with two charged bodies respectively, the signal can be enhanced with the nonlinearity caused by Coulomb interaction, while the noise presents an exponential decrease. Moreover, considering the homodyne detection effect, the range of system parameters and frequency bands will be broadened. The present investigation may provide a route toward simultaneously evading backaction noise, reducing the mechanical thermal noise, and enhancing the external signal, which can be an alternative design for sensitive devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.