Abstract

Phosphorus-containing flame retardants are prone to result in the buildup of biotoxins, while halogen flame retardants easily lead to hazardous gases. Therefore, it is crucial to develop a multifunctional flame-retardant cotton fabric without phosphorus and halogen. Herein, single-ended hydroxy-terminated polydimethylsiloxane (PDMS-ID) was synthesized through single-ended hydrosilicone oil and 1,4-butanediol, followed by the preparation of a waterborne polyurethane (RWPU) containing side chain polydimethylsiloxane through the reaction of PDMS-ID with isocyanate prepolymer. Characterization data shows that its particle size distribution is relatively dispersed while maintaining good emulsification performance. Based on this, a halogen-free and phosphorus-free multifunctional flame retardant cotton fabric (COF-BBN@RWPU) was successfully prepared through treatment with boric acid/borax/3-aminopropyltriethoxysilane solution and subsequent RWPU encapsulation. In vertical flammability test (VFT), COF-BBN@RWPU has a char length of 57 mm and a limiting oxygen index (LOI) of 42.3 % with a 11 % weight gain while pure cotton was burned through with a LOI of 18.0 %. In addition, the total heat release and total smoke release of COF-BBN@RWPU decreased by 80.0 % and 47.2 %, compared with pure cotton. Additionally, COF-BBN@RWPU can achieve a maximum contact angle of 140.1° with an oil-water separation rate of 98.4 %. This study presents an eco-friendly approach to achieving the multifunctionality of cellulose fabrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.