Abstract
Federated learning (FL) enables many clients to train a joint model without sharing the raw data. While many byzantine-robust FL methods have been proposed, FL remains vulnerable to security attacks (such as poisoning attacks and evasion attacks) because of its distributed nature. Additionally, real-world training data used in FL are usually Non-Independent and Identically Distributed (Non-IID), which further weakens the robustness of the existing FL methods (such as Krum, Median, Trimmed-Mean, etc.), thereby making it possible for a global model in FL to be broken in extreme Non-IID scenarios. In this work, we mitigate the vulnerability of existing FL methods in Non-IID scenarios by proposing a new FL framework called Mini-Federated Learning (Mini-FL). Mini-FL follows the general FL approach but considers the Non-IID sources of FL and aggregates the gradients by groups. Specifically, Mini-FL first performs unsupervised learning for the gradients received to define the grouping policy. Then, the server divides the gradients received into different groups according to the grouping policy defined and performs byzantine-robust aggregation. Finally, the server calculates the weighted mean of gradients from each group to update the global model. Owning the strong generality, Mini-FL can utilize the most existing byzantine-robust method. We demonstrate that Mini-FL effectively enhances FL robustness and achieves greater global accuracy than existing FL methods when against the security attacks and in Non-IID settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.