Abstract
This paper describes a fault isolation approach for electric powertrains of unmanned aerial vehicles.The approach leverages the combination of failure mode and effect analysis (FMEA) and Bayesian networks,
 thus introducing dependability structures into a diagnostic framework. Faults and failure events from the FMEA are mapped within a Bayesian network, where network edges replicate the links embedded whitin FMEAs. This framework helps the fault isolation process by identifying the probability of occurrence of specific faults or root causes given evidence observed through sensor signals. The framework is applied to an electric powertrain system of a small, rotary-wing unmanned aerial vehicle, demonstrating how a Bayesian network enhanced by FMEA helps disambiguate between root causes of incipient failures, which would otherwise be considered as equally probable.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.